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Abstract
Recently Ercolani and McLaughlin proved that the zeros of the biorthogonal
polynomials with the weight functionw(x, y) = exp(−V (x)−W(y)− 2τxy)
are all real and distinct, and Mehta has extended their argument to the
weight function w(x, y) = e−x−y/(x + y) and to the more general case of the
convolution (w1 ∗ w2 ∗ · · · ∗ wm)(x, y), where wi are functions of the same
form as above. Using the concept of total positive and sign-regular
functions, we further extend the argument to a large class of weight functions.
Many examples are presented, including several whose pair of biorthogonal
polynomials turn out to come from different families of classical orthogonal
polynomials.

PACS number: 02.30.Gp
Mathematics Subject Classification: 42C05, 32C45

1. Introduction

The biorthogonal polynomials considered in this paper are two families of polynomials {pn}
and {qn} related to the weight function of two variables,w(x, y), by the following biorthogonal
relation: ∫

R

∫
R

pn(x)qm(y)w(x, y) dx dy = hnδm,n hn �= 0 (1.1)

where pn and qn are polynomials of degree exactly n. These polynomials are studied in
association with the random matrix theory.

Let w(x, y) be a weight function defined on X × Y , where X and Y are Borel sets of R,
such that all its moments

mi,j =
∫
X

∫
Y

xiyjw(x, y) dx dy (1.2)

and the determinant of the moments

Dn = det(mi,j )ni,j=0 �= 0 n � 0 (1.3)
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where dx and dy are the Lebesgue measure on X and Y; if either X or Y is discrete, we take
the measure as the counting measure. Then the biorthogonal polynomials {pn} and {qn} exist,
and they are unique if we assume that these polynomials are monic. A polynomial is monic if
its coefficient of the highest degree term is 1. Just like the usual orthogonal polynomials, they
can be expressed as determinants:

pn(x) = det



m0,0 m0,1 . . . m0,n−1 1
m1,0 m1,1 . . . m1,n−1 x

...
...

. . .
...

...

mn,0 mn,1 . . . mn,n xn




and

qn(x) = det




m0,0 m0,1 . . . m0,n

m1,0 m1,1 . . . m1,n

...
...

. . .
...

mn−1,0 mn−1,1 . . . mn−1,n

1 x . . . xn



.

Recently, Ercolani and McLaughlin [2] showed that these polynomials exist for the weight
functions

w(x, y) = exp(−V (x)−W(y)− 2τxy) x, y ∈ R (1.4)

in which V and W are smooth functions with polynomial growth at ∞ and τ is a nonzero
constant such that all the moments of w exist for τ in some fixed neighbourhood of zero, and
they studied various properties of these polynomials. Among many other things, they proved
that the zeros of biorthogonal polynomials pn and qn with respect to the weight function (1.4)
are all real and distinct.

In a follow-up paper, Mehta [4] showed that the argument of Ercolani and McLaughlin
can be applied to other weight functions and proved that the zeros of biorthogonal polynomials
are real and distinct for the weight function

(w1 ∗ w2 ∗ · · · ∗wm)(x, y) =
∫

R
m−1
w1(x, z1)w2(z1, z2) · · ·wm(zm−1, y) dz1 · · · dzm−1 (1.5)

where wk are the weight functions

wk(x, y) = exp(−Vk(x)−Wk(y)− 2τkxy) x, y ∈ R

in which Vk, Wk and τk are as in (1.4) such that all the moments of the function
(w1 ∗ w2 ∗ · · · ∗ wm)(x, y) exist. Furthermore, Mehta proved that the same holds for the
weight function

w(x, y) = e−x−y/(x + y) 0 � x, y < ∞ (1.6)

and its convolution extensions.
The purpose of this paper is to show that using the concept of total positive functions and

sign-regular functions, the argument in [2] can be extended to study biorthogonal polynomials
for rather general weight functions and to present a large number of examples. The main
results are stated and proved in the next section. In section 3 we give various examples of
the weight functions for which biorthogonality exists. In particular, we show that for some
weight functions the biorthogonal polynomials can come from families of classical orthogonal
polynomials, including both continuous and discrete families, although pn and qn are often
from different families of orthogonal polynomials.
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2. Main results

The total positive and sign-regular functions are studied in detail in [3]. We recall the basic
definitions. Let X and Y be the two sets of R. A real functionw(x, y) of two variables defined
on X × Y is said to be total positive of order r (abbreviated TPr ) if for all

x1 < x2 < · · · < xn y1 < y2 < · · · < yn xi ∈ X yj ∈ Y
and for all positive integers n � r , we have the inequality

det [w(xj , yk)]j,k=0,...,n := det



w(x1, y1) w(x1, y2) . . . w(x1, yn)

w(x2, y1) w(x2, y2) . . . w(x1, yn)

...
...

...

w(xn, y1) w(xn, y2) . . . w(xn, yn)


 � 0.

If strict inequality holds, then we say that w is strictly total positive of order r (STPr ). More
generally, a function w(x, y) is called sign-regular of order r (SRr ), if there exists a sequence
of numbers εn, each either 1 or −1 such that

εn det [w(xj , yk)]j,k=0,...,n � 0 1 � n � r

and it is called strict sign-regular (SSRr ) if strict inequalities hold. If r = ∞, then we simply
write TP, STP, SR and SSR. Note that for r = ∞, X and Y must be infinite sets of R.

Intimately connected with the concept of total positivity is the Chebyshev system of
functions. A sequence of continuous functions φ0(x), . . . , φn(x) is a Chebyshev system on
a < x < b if, for any set of real numbers c0, . . . , cn, not all zero, the function

∑n
k=0 ckφk(x)

does not vanish more than n times on the interval (a, b). An equivalent definition is that for
all a < x0 < x1 < · · · < xn < b the determinant

det [φj(xk)]j,k=0,...,n := det



φ0(x0) φ0(x1) . . . φ0(xn)

φ1(x0) φ1(x1) . . . φ1(xn)

...
...

. . .
...

φn(x0) φn(x1) . . . φn(xn)




never vanishes, and therefore maintains a fixed sign.

Theorem 2.1. Let w(x, y) be STP or SRP such that all moments mi,j of w exist. Then the
monic biorthogonal polynomials pn and qn are uniquely determined by the relation∫

X

∫
Y

pn(x)qm(y)w(x, y) dx dy = hnδm,n hn �= 0. (2.1)

Moreover, all the zeros of pn and qn are real, distinct and lie in X and Y, respectively.

Proof. In order to show the existence of pn and qn, we need to show that the moment matrix
Dn is nonzero for all n � 1. Using the multi-linearity of the determinant, we have

Dn = det

[∫
X

∫
Y

xjykw(x, y) dx dy

]
j,k=0,...,n

=
∫
Xn+1

∫
Yn+1

det
[
x
j

j y
k
kw(xj , yk)

]
j,k=0,...,n dx0 · · · dxn dy0 · · · dyn

=
∫
Xn+1

∫
Yn+1

n∏
l=0

xll

n∏
m=0

ymm det [w(xj , yk)]j,k=0,...,n dx0 · · · dxn dy0 · · · dyn
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=
∑
σ

∫
xσ(0)<xσ(1)<···<···xσ(n)

∑
τ

∫
yτ(0)<yτ(1)<···<yτ(n)

n∏
l=0

xll

n∏
m=0

ymm

× det [w(xj , yk)]j,k=0,...,n dx0 · · · dxn dy0 · · · dyn

where the summations are taken over all permutations, σ and τ , of the integers {0, 1, . . . , n}.
Changing the summation index and using the fact that

det
[
w

(
xσ(j), yτ(k)

)]
j,k=0,...,n = (−1)σ (−1)τ det [w(xj , yk)]j,k=0,...,n

we then have

Dn =
∫
x0<x1<···<xn

∫
y0<y1<···<xn

∑
σ

(−1)σ
n∏
l=0

(
xσ−1(l)

)l ∑
τ

(−1)τ
n∏

m=0

(
yσ−1(m)

)m
× det[w(xj , yk)]j,k=0,...,n dx0 · · · dxn dy0 · · · dyn

=
∫
x0<x1<···<xn

∫
y0<y1<···<xn

∏
j<k

(xk − xj )
∏
j<k

(yk − yj )

× det[w(xj , yk)]j,k=0,...,n dx0 · · · dxn dy0 · · · dyn

where the last equals sign follows from the fact that

∑
σ

(−1)σ
n∏
l=0

(
xσ−1(l)

)l = det




1 1 . . . 1
x0 x1 . . . xn
...

...
. . .

...

xn0 xn1 . . . xnn .


 =

∏
j<k

(xk − xj ).

Consequently, the fact that w is STP or SSR shows that Dn �= 0. �

Theorem 2.2. Let X and Y be two open intervals. Let w(x, y) be a function defined onX× Y

such that w is STP or SRP and all moments mi,j of w exist. Then all zeros of pn and qn are
real, distinct and lie inside X and Y, respectively.

Proof. For each non-negative integer m, let φm and ψm be functions defined by

φm(x) =
∫
Y

ymw(x, y) dy x ∈ X

ψm(y) =
∫
X

xmw(x, y) dx y ∈ Y.

We prove that the family of functions {φ0, φ1, . . . , φm} forms a Chebyshev system on X. For this
we need to show that for all x0 < x1 < · · · < xm, xi ∈ X, the determinant det [φj(xk)]j,k=0,...,m

never vanishes. However, a calculation similar to the proof of the previous theorem shows that

det[φj(xk)]j,k=0,...,m = det

[∫
Y

yjw(xk, y) dy

]
j,k=0,...,m

=
∫
Ym+1

det
[
y
j

j w(xk, yj )
]
j,k=0,...,m dy0 · · · dym

=
∫
y0<y1<···<ym

det[w(xk, yj )]j,k=0,...,m

∏
i<l

(yl − yi) dy0 · · · dym.

Again, the fact thatw is STP or SSR shows that the det [φj(xk)]j,k=0,...,m is nonzero. Similarly,
the family {ψ0, ψ1, . . . , ψm} forms a Chebyshev system on Y.
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We now prove the property on the zeros ofpn; the proof for qn is similar. The biorthogonal
relation (2.1) implies that∫
X

pn(x)φm(x) dx =
∫
X

∫
Y

pn(x)y
mw(x, y) dx dy = 0 0 � m � n− 1.

Suppose z1 < · · · < zm, m < n, are all distinct zeros of pn having odd multiplicity in X.
By the definition of the Chebyshev system, there exists a function φ(x) = ∑m

j=0 ckφk(x) that
vanishes at z1, . . . , zm and φ has no other zeros in X. This, however, implies that∫

X

pn(x)

m∑
j=0

ckφk(x) dx �= 0

which contradicts the orthogonal relation, so that pn has exactly n distinct zeros in X. �

In the proof of this theorem we need X and Y to be open intervals to use the property of
the Chebyshev system. We note that to show the zeros of pn are distinct and in X, we only
need X to be an interval. Similarly, to show the zeros of qn are distinct and in Y, we only need
Y to be an interval.

In the above theorems we assume that w is STP or SSR. The proof shows that we can
relax this condition somewhat. Indeed, for the existence of the biorthogonal polynomials, we
only need that∫
x0<x1<···<xn

∫
y0<y1<···<xn

∏
j<k

(xk − xj )
∏
j<k

(yk − yj )

× det [w(xj , yk)]j,k=0,...,n dx0 · · · dxn dy0 · · · dyn (2.2)

does not vanish, where xi ∈ X and yi ∈ Y in the domain of the integrals. Furthermore, for
theorem 2.2 to hold, what we need is that the integral∫

y0<y1<···<ym
det[w(xk, yj )]j,k=0,...,m

∏
i<l

(yl − yi) dy0 · · · dym (2.3)

does not vanish for any given x0 < x1 < · · · < xn, xi ∈ X, and the integral∫
x0<x1<···<xm

det[w(xk, yj )]j,k=0,...,m

∏
i<l

(xl − xi) dx0 · · · dxm (2.4)

does not vanish for any given y0 < y1 < · · · < yn, yi ∈ Y . Therefore, if w is TP or SR and
makes the above three integrals nonzero, then the theorems still hold. For example, we have
the following result.

Theorem 2.3. Let X and Y be open intervals. Let w(x, y) be a function defined on X × Y

such that w is TP or SR and all moments mi,j of w exist. If the above three integrals do not
vanish, then the biorthogonal polynomials pn and qn are uniquely determined by (2.1) and all
the zeros of pn and qn are distinct and inside X and Y, respectively.

We note that w is TP or RS without the additional assumption is not enough. Indeed,
consider the weight function w(x, y) = u(x)v(y), where u and v are positive functions so
that w has all finite moments; evidently, the matrix [w(xk, yj )]j,k=0,...,n is of rank 1, and the
determinant is zero for all xk ∈ X and yj ∈ Y for n > 1. The product weight function is
TP but not STP. It is easy to see that biorthogonal polynomials do not exist for this weight
function.

There are many examples of TP and SR functions that satisfy the conditions in the above
theorems. Moreover, there are several properties that are useful for constructing a large class
of such functions.
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Proposition 2.4. Let w(x, y) be SR on X × Y . (a) If u(x), v(y) are nonzero functions
maintaining the same constant sign for x ∈ X and y ∈ Y , respectively, then the function

a(x, y) = u(x)v(y)w(x, y) x, y ∈ X × Y

is SR. (b) If u = φ−1(x) and v = ψ−1(x), each defines a strictly increasing (decreasing)
function mapping X and Y into U and V , respectively, where φ−1 and ψ−1 are the inverse
functions of φ and ψ , then the function

b(u, v) = w(φ(u),ψ(v)) u, v ∈ U × V

is SR on U and V .

This is [3, p 18, theorem 2.1], the proof follows trivially from the definition. The support
set of a function u(x) is the set of points such that u(x) �= 0. As an immediate consequence
of the above proposition, we state the following result.

Corollary 2.5. If w(x, y) satisfies the conditions of theorem 2.3, u(x) and v(y) are positive
functions supported on X and Y, respectively, then the function a(x, y) = u(x)v(y)w(x, y)

satisfies the conditions of theorem 2.3 as well.

Our second property deals with the convolution w1 ∗ w2 defined by

(w1 ∗ w2)(x, y) =
∫
Z

w1(x, z)w2(z, y) dµ(z) x ∈ X y ∈ Y

where µ is a finite Borel measure defined on Y. We need the notation

w

(
x1 x2 . . . xn

y1 y2 . . . yn

)
:= det[w(xj , yk)]k,j=1,...,n.

The following is called the basis composition formula [3, p 17, (2.5)]:

(w1 ∗ w2)

(
x1 x2 . . . xn

y1 y2 . . . yn

)

=
∫
z1<z2<···<zn

· · ·
∫
w1

(
x1 x2 . . . xn

z1 z2 . . . zn

)
w2

(
z1 z2 . . . zn

y1 y2 . . . yn

)
dz1 · · · dzn.

This is a consequence of the Cauchy–Binet formula that is also used in [4]. In particular, using
this formula repeatedly, it implies the following result on the convolution (w1 ∗w2 ∗ · · · ∗wm)
defined as in (1.5).

Proposition 2.6. If wi(x, y) are SR (SSR) on Xi−1 × Xi , 1 � i � m, and µi are positive
Borel measures, then the function

(w1 ∗ w2 ∗ · · · ∗wm)(x, y)
=

∫
X1×···×Xm−1

· · ·
∫
w1(x, z1)w2(z1, z2) · · ·wm(zm−1, y) dµ1(z1) · · · dµm−1(zm−1)

is SR (SSR) on X × Y , where X = X0 and Y = Xm.

The following corollary is a consequence of the Fubini theorem and the above proposition:

Corollary 2.7. If each weight function wi satisfies the conditions of theorem 2.3 on X × Y ,
then the weight function w(x, y) = (w1 ∗ w2 ∗ · · · ∗ wm)(x, y) satisfies the conditions of
theorem 2.3.
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It is worth noting that, for a fixed integer n, the proof of our results only requiresw(x, y)
to be in SRn or SSRn. In particular, this means that we can discuss biorthogonal polynomials
even when X and Y are finite sets, just as in the case of discrete polynomials. If X is a finite
set, we use the notation |X| to denote the number of elements in X.

Theorem 2.8. Let X be a finite set and N = |X|, and let Y be either an infinite set or
|Y | � N . Let w(x, y) be a function defined on X × Y such that w is STP N or SRPN . Then
the biorthogonal polynomials {pn}Nn=0 and {qn}Nn=0 are uniquely determined by relation (2.1).

If Y is an interval, then we can also conclude that all zeros of qn are real, distinct and lie
inside Y.

3. Examples

3.1. Examples of weight functions

We are now ready to state our examples. Two of the simplest examples of the STP function
are e−xy for x, y ∈ R [3, p 15] and 1/(x + y) for x, y ∈ (0,∞) [3, p 149]. We note that if
w(x, y) is SR or SSR on X× Y , then it is also SR or SSR on any subset of X × Y . Hence, as
a consequence of corollary 2.5, we have

Example 3.1. Let u(x) be a positive function on (a, b) and let v(y) be a positive function on
(c, d). Assume all moments of the weight functions

w1(x, y) = u(x)v(y) e−xy −∞ � a < b � ∞ −∞ � c < d � ∞
and

w2(x, y) = u(x)v(y)/(x + y) 0 < a < b � ∞ 0 < c < d � ∞
exist. Then the monic biorthogonal polynomials pn and qn with respect to either w1 or w2 are
uniquely determined and all the zeros of pn are distinct and in (a, b) and all the zeros of qn
are distinct and in (c, d).

The weight function considered by Ercolani and McLaughlin [2] is the case w1(x, y)

with u(x) = e−V (x), (a, b) = R and v(y) = e−W(y), (c, d) = R. The case w2(x, y) with
u(x) = e−x , (a, b) = (0,∞) and v(y) = e−y , (c, d) = (0,∞), is proved by Mehta [4].
Furthermore, corollary 3.2 shows that the conclusion also works for the convolution of the
weight functions of the same type, as in [4]. The cases that (a, b) and (c, d) are finite intervals
are permitted in the above example, for which all moments of w exist if w is a measurable
function.

There are many other total positive or sign-regular functions that satisfy the condition of
theorem 2.3. We list several examples below:

Example 3.2. Let φ and ψ be strictly increasing (decreasing) functions on (a, b) and (c, d),
respectively, and φ : (a, b) �→ (A,B) and ψ : (c, d) �→ (C,D). If u(x) and v(y) are positive
functions on (a, b) and (c, d), respectively, and all the moments of

w1(x, y) = u(x)v(y) e−φ(x)ψ(y) x ∈ (a, b) y ∈ (c, d)
or

w2(x, y) = u(x)v(y)

φ(x) + ψ(y)
x ∈ (a, b) y ∈ (c, d) A,C > 0

exist, then the biorthogonal polynomials pn and qn exist and all their zeros are distinct and lie
in (a, b) and (c, d), respectively.
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Evidently, this is a consequence of proposition 2.4. Examples include weight functions

w(x, y) = u(x)v(y) e−xmym −∞ � a < x, y < b � ∞
where m is an odd integer, and for all α, β > 0,

w(x, y) = u(x)v(y)

xα + yβ
x ∈ (a, b) y ∈ (c, d) 0 < a < b 0 < c < d A,C > 0

in which u and v are positive functions so that all moments of w exist.
An important class of TP functions is the Pólya frequency functions studied by Schoenberg

[3, ch 7]. A Pólya frequency function of order r (PFr ) is a function f defined on R for which
w(x, y) = f (x − y) is TPr . Again we use the notation PF if r = ∞. The class of PF is
completely determined and all functions of the form u(x)v(y)f (x − y), f ∈ PF, that have
finite moments satisfy the condition of theorem 2.3. We summarize this as the next example.

Example 3.3. Let f (u) be defined through its Laplace transform by∫ ∞

−∞
e−sxf (x) dx = 1

e−γ s2+δs
∏∞
i=1(1 + ais) e−ai s

where γ � 0, δ real and 0 < γ +
∑
a2
i < ∞. If u and v are positive functions on R such

that all the moments of the weight function w(x, y) = u(x)v(y)f (x − y) exist, then w(x, y)
satisfies the condition of theorem 2.3.

This follows from proposition 2.4 and [3, p 357, theorem 6.1]; moreover, if γ > 0 then
w is strictly PF. The simplest examples of f are f (t) = e−γ t2 , γ > 0, and

f (t) =
{

e−λt t � 0
0 t < 0

or f (t) =
{

eλt t � 0
0 t > 0

where λ > 0. We note that the multiplication of u(x) and v(y) is necessary for all f in PF,
since functions of the form w(x, y) = f (x − y) do not have all finite moments as one can
easily see in the example of f (t) = e−γ t .

3.2. Biorthogonality of the classical orthogonal polynomials

As pointed out in [2], in the case of

w(x, y) = e−αx2
e−βy2

e−xy α, β > 0 αβ > 1 x, y ∈ R

(w1(x, y) in example 3.1 with V (x) = αx2 and U(y) = βy2), the biorthogonal polynomials
pn and qn are in fact Hermite polynomialsHn(x) with a proper dilation,

pn(x) = Hn

(
x√
β

√
αβ − 1

)
qn(y) = Hn

(
y√
α

√
αβ − 1

)
.

Here and in the following, when the biorthogonal polynomials are in terms of orthogonal
polynomials, they may not be normalized to be monic polynomials.

In the following we show several other examples in which classical orthogonal
polynomials appear with certain biorthogonality.

As our first example, we consider the function defined by [3, p 16]

w(x, y) =
{

1 a � x � y � b

0 a � y < x � b.
(3.1)

This function is TP. Furthermore, for arbitrary x1 < x2 < · · · < xn and y1 < y2 < · · · < yn,
we have

w

(
x1 x2 . . . xn

y1 y2 . . . yn

)
=

{
1 x1 � y1 < x2 � y2 < · · · < xn � yn

0 otherwise.
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Evidentlyw(x, y) satisfies the conditions of theorem 2.3, so that the biorthogonal polynomials
with respect to w exist. It turns out that these polynomials are in fact certain Jacobi
polynomials. The Jacobi polynomials, P (α,β)n (x), are classical orthogonal polynomials
orthogonal with respect to the weight function

u(α,β)(x) = (1 − x)α(1 − x)β −1 < x < 1 α > −1 β > −1.

Let us assume that P (α,β)n denote the monic polynomials. A simple change of the variable
gives the corresponding weight function on (a, b). To simplify the notation, we work with
(a, b) = (−1, 1) and we consider a slightly more general weight function.

Proposition 3.4. Let w(x, y) be defined as in (3.1) on (−1, 1). Then the biorthogonal
polynomials pn and qn with respect to the weight function

a(x, y) = (1 − x)α(1 + y)βw(x, y) −1 < x, y < 1 α, β > −1

are in fact orthogonal polynomials, pn(x) = P
(α,β+1)
n (x) and qn(y) = P

(α+1,β)
n (y).

Proof. From the definition of w(x, y) it follows that

φm(x) :=
∫ 1

−1
(1 + y)ma(x, y) dy = (1 − x)α

∫ x

−1
(1 + y)m+β dy

= (1 − x)α(1 + x)m+β+1/(m + α + 1).

The biorthogonality of pn(x) to qm(y) implies that
∫ 1

−1
pn(x)φm(x) dx =

∫ 1

−1

∫ 1

−1
pn(x)(1 + y)ma(x, y) dx dy = 0

for 0 � m � n − 1. Consequently, the above formula of φm shows that pn is orthogonal
to (1 + y)m with respect to the weight function (1 − x)α(1 + x)β+1, so that pn(x) is equal to
P
(α,β+1)
n . Working with the integral of (1 − x)m with respect to a(x, y), the proof for qn(y)

follows similarly. �

We could also multiply the weight function in this example by (y − x)
γ
+ , which is equal

to (y − x)γ if y > x and zero otherwise, to get biorthogonality of the other pair of Jacobi
polynomials.

In the definition of the biorthogonal polynomials, we can also take X and Y as discrete
sets, for example, the set of non-negative integers N0. Our next example examines the weight
function related to the Poisson distribution. In this case we run into Laguerre polynomials,
Lαn(x), which are orthogonal with respect to xα e−x on [0,∞) and a special case of the Mexiner
polynomials,Mn(x; b, c), whose orthogonal relation is given by [1, p 346]

∞∑
x=0

(b)x

x!
cxMm(x; b, c)Mn(x; b, c) = c−nn!

(b)n(1 − c)b
δm,n

where (a)m denote the Pochhammer symbol (a)m = a(a + 1) · · · (a +m− 1).

Proposition 3.5. Let c > 0 and α > −1 be two constants, and let w(x, y) be defined by

w(x, y) = 1

�(x + 1)
(cy)xyα e−y y ∈ (0,∞) x ∈ N0.
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Then the biorthogonal polynomials pn and qn determined by
∫ ∞

0

∞∑
x=0

pn(x)qm(y)w(x, y) dy = hnδn,m hn �= 0

are orthogonal polynomials, pn(x) = Mn(x; α + 1, c) and qn(y) = Lαn((1 + c)x).

Proof. Since the weight function tx = ex ln t is STP, the weight function w(x, t) is STP by
proposition 2.4. By the definition of the gamma function, the fact that pn is biorthogonal to
ym, 0 � m � n− 1, gives

0 =
∞∑
x=0

pn(x)

∫ ∞

0
ymw(x, y) dy

=
∞∑
x=0

pn(x)
1

�(x + 1)
cx

∫ ∞

0
ym+x+α e−y dy =

∞∑
x=0

pn(x)
�(m + x + α + 1)

�(x + 1)
cx.

Using (α + 1)x = �(α + x + 1)/�(α + 1) we have

�(m + x + α + 1)

�(x + 1)
= �(m + x + α + 1)

�(x + α + 1)

�(α + 1)

�(x + 1)
(α + 1)x;

since �(m + x + α + 1)/�(x + α + 1) is a polynomial of degree m in x, it follows that pn(x)
is orthogonal to polynomials of degree at most n − 1 with respect to the discrete measure
cx(α + 1)x/�(x + 1). Hence, pn is the Mexiner polynomialMn(x; α + 1, c).

The biorthogonal relation of qn(y) orthogonal to xm, 0 � m � n− 1, shows that qn(y) is
orthogonal to ψm defined by

ψm(y) =
∞∑
x=0

xm(ct)x/x!

for 0 � m � n− 1. It is easy to see that ψ0(y) = e−cy . Moreover, since

ψm(y) =
∞∑
x=1

xm−1(cy)x/(x − 1)! = cy

∞∑
x=0

(x + 1)m−1(cy)x/x!

it follows from induction that gm(y) = ecyψm(y) is a polynomial in y of degree m.
Consequently,

0 =
∫ ∞

0
qn(y)ψm(y)y

α e−y dy =
∫ ∞

0
qn(y)gm(y)y

α e−(1+c)y dy

so that a simple change of the variable y �→ t/(1 + c) shows that qn(t/(1 + c)) is orthogonal
to polynomials of degree at most n− 1 with respect to tα e−t . Hence, qn(y) = Lαn((1 + c)t).

�

In our last example, the weight function is related to the binomial distribution and one of
the variables is defined on a finite set. We will need the Hahn polynomials, Qn(x; α, β,N),
whose orthogonal relation is given by [1, p 345]

N∑
x=0

(α + 1)x(β + 1)N−x
x!(N − x)!

Qn(x; α, β, ,N)Qm(x; α, β, ,N) = hnδm,n

where α, β > −1, hn �= 0 can be explicitly given but will not be needed below.
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Proposition 3.6. Let N be a positive integer and let w(x, y) be defined by

w(x, y) =
(
N

x

)
yx(1 − y)N−x 0 < y < 1 X = 0, 1, . . . , N.

Then the biorthogonal polynomials pn and qn determined by∫ 1

0

N∑
x=0

pn(x)qm(y)w(x, y) dy = hnδn,m hn �= 0 0 � m,n � N

are orthogonal polynomials, pn(x) = Qn(x; 0, 0, N) and qn(y) = P (0,0)n (2y − 1).

Proof. Changing the variable y �→ et /(1 + et ), then w(x, y) becomes
(
N

x

)
ext (1 + et )−N as

indicated in [3, p 10]. Hence, using the fact that ext is STP and proposition 2.4, the weight
function is STPN . Hence, theorem 2.8 shows that pn and qn exist for 0 � n � N .

Using the beta integral, the biorthogonality of pn(x) to ym, 0 � m � n− 1, shows that

0 =
N∑
x=0

∫ 1

0
pn(x)y

mw(x, y) dy =
N∑
x=0

(
N

x

)
pn(x)

∫ 1

0
ym+x(1 − y)N−x dy

=
N∑
x=0

(
N

x

)
pn(x)

(m + x)!(N − x)!

(m +N)!
= N!

(N +m)!

N∑
x=0

pn(x)
(m + x)!

x!
.

Since (m + x)!/x! is a polynomial of degree m in x, this shows that pn(x) is orthogonal
with respect to lower degree polynomials with respect to the unit weight. Hence, pn(x) =
Mn(x; 1, 1) since (1)x = x!.

On the other hand, the orthogonality of qn(y) to xm, 0 � m � n − 1, shows that qn is
orthogonal to

ψm(y) =
N∑
x=0

xm
(
N

x

)
yx(1 − y)N−x 0 � m � n− 1

with respect to the unit weight function on [0, 1]. Since it is easy to see that

ψm(y) = yN

N−1∑
x=0

(x + 1)m−1

(
N − 1

x

)
yx(1 − y)N−x−1

induction shows that ψm(y) is a polynomial of degree m in y, so that qn(y) is orthogonal to
lower degree polynomials with respect to dy on [0, 1]. �

The usual binomial distribution is associated with the Krawtchouk polynomials,
Kn(x;p,N), whose orthogonal relation is given by [1, p 347]

N∑
x=0

(
N

x

)
px(1 − p)N−xKn(x;p,N)Km(x;p,N) = (−1)nn!

(−N)n

(
1 − p

p

)n
δm,n

where 0 < p < 1. It is interesting to note that a special case of the Hahn polynomial, not
the Krawtchouk polynomial, appears in the biorthogonal relation with respect to the binomial
distribution.

4. Conclusion

Using the concept of total positive functions or sign-regular functions, we showed that the
argument of Ercolani and McLaughlin in [2] can be extended to large classes of weight
functions, so that the biorthogonal polynomials exist and have real and distinct zeros.
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Many examples are presented, including several whose biorthogonal polynomials are classical
orthogonal polynomials which give new orthogonal relations between different families of
classical orthogonal polynomials.
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